

Command line guide

Low power mobile data logger
ThingsLog LPMDL-1102 NB-IoT Data logger

© iTransformers Labs Ltd 11 Magnaurska shkola str., fl. 3, office 315 (Hightech Business Park, BIC IZOT),

1784, Sofia, Bulgaria

Phone (+359) 875 32 80 70• Email: info@thingslog.com

Access to CLI console port

To access the command line interface you have to connect with an USBtoTTL cable to the logger console (UART) port.

Loggers without analog input ports

To access the console port on the loggers you have to take out the logger from the enclosure and connect to the 3 pins on the PCB (GND, TX and RX) as it is shown on the picture.

Figure 1 UART & service mode pins in 2 channel data loggers (v.4.2)

Loggers with analog input ports

To access the console port on the loggers you have to take out the logger from the enclosure and connect to the following 3 pins on the PCB.

To put the device into service mode you need to short circuit the two pins close to the reed switch, see on the picture the "Service pin" and "Service GND".

If you are using ThingsLog UART cable the color scheme is the following:

Black	GND
White	RXD
Green	TXD
Red	5V (not used)

Note: RX on the cable must be connected to TX on the board and RX on the cable must be connected with TX on the board.

CLI commands

There are different commands that can be used to configure the NB-IoT device when it is in service mode. In order to do this configuration it is necessary to put device in service mode using the service button.

Enter in base service mode

- 1. Connect to the debug UART port using baud rate 57600
- 2. Press the service button
- 3. Verify that the following message appear in UART console: "service # ". This indicates that the device is in the base service mode

Example

service #

- Enter in gprs_service mode
- 1. Execute extension command. This will enter in device (LoRA, GPRS, NBIoT) specific sub-menu
- 2. Verify "gprs_service # " prompt appears.

Example

```
service # extension
gprs_service #
```

Exit the gprs_service mode and enter in base service mode

- 1. Verify you are in gprs_service mode the prompt is "gpr_service # "
- 2. Execute exit command to exit "gprs_service" mode and to enter the base service mode
- 3. Verify "service # " prompt for the base service mode appear

Example

```
gprs_service # exit
service #
```

Set collecting server address and port

- Verify you are in gprs_service mode the prompt is "gpr_service # "
- 2. Execute command set addr port
- 3. Verify "address=" prompt appear
- 4. Enter the new server address and press enter
- 5. Verify "port=" prompt appear
- 6. Enter the new server port and press enter
- 7. Execute resolvelp to set DNS name resolution 8 Verify that resolvelp= appears. Set it 1 to resolve address by DNS or 0 to disable resolving (address should be an IP address).
- 8. Verify "done" appear

```
service # extension
gprs_service # set_addr_port
address=10.10.10.10
port=4445
resolve_ip=1
done
gprs service #
```


Get collecting server address and port

- Verify you are in gprs_service mode the prompt is "gpr_service # "
- 2. Execute command get addr port
- 3. Verify "address=<some_ip>" appear
- 4. Verify "port=<some_port>" appear
- 5. Don't forget to store the configuration.

Example:

```
service # extension
gprs_service # get_addr_port
address=10.10.10.10
port=4445
done
gprs_service #
```

Set APN

- 1. Execute command set apn
- 2. Verify "apn=" prompt appears
- 3. Enter the new APN and press enter
- 4. Verify "done" appear
- 5. Don't forget to store the configuration.

Example:

```
service # extension
gprs_service # set_apn
apn=some.operator.apn
done
gprs service #
```

Get APN

- 1. Execute command get apn
- 2. Verify "apn=some.operator.apn" appear

Example:

```
service # extension
gprs_service # get_apn
apn=some.operator.apn
done
gprs service #
```

Set NB-IoT network bands

The modem supports the following network bands

B1 @H-FDD: 2100MHz B3 @H-FDD: 1800MHz B8 @H-FDD: 900MHz B5 @H-FDD: 850MHz B20 @H-FDD: 800MHz B28 @H-FDD: 700MHz

You can configure the network bands with the following CLI command. Note that you may configure more than one network band.

Example:

```
service # modem
nbmodem_service # set_bands
bands=8,28
nbmodem_service # exit
```

Get NB-IoT network bands

- 1. Navigate to modem
- 2. Execute command get bands
- 3. Verify "bands=some.band" appears

Example:

```
nbmodem_service # get_bands
bands=28
done
nbmodem_service # exit
Set NB-IoT network attachment timeout
```

Network attachment delay is the time for which the logger will wait to be recognized and paged by the mobile network.

- 1. Navigate to extension mode
- 2. Execute command set net att delay
- 3. Verify "net_att_delay=some.delay " appears.
- 4. Enter the delay value in milliseconds (default is 15000 ms) e.g 15 seconds.
- 5. Don't forget to store the configuration

```
service # extension
gprs_service # set_net_att_delay
net_att_delay=some.delay
```



```
done
gprs_service #
```

Get NB-IoT network attachment timeout

- 1. Navigate to extension mode
- 2. Execute command get net att delay
- Verify "net_att_delay=some.delay in ms" appears
- 4.

Example:

```
service # extension
nbmodem_service # get_net_att_delay
net_att_delay=15000
done
```

Set ADC read time

ADC reading time is a parameter that is valid only if you have a logger with analog ports. It should be equal or bigger than the analog sensor setting time. Setting time is the time required by the sensor placed in its particular environment to produce a correct measurement and output it on its analog port. The adc reading time is in ms. Sensors suitable for low power measurements have short adc read times (10-20ms).

- 1. Execute command set adc read time
- 2. Verify "adc_read_time=" appears

```
ST=2018-09-03 11:50:56
WKUP 2018-09-03 11:50:56
Service mode triggered
Service
Type help for help
service # adc_read_time
adc_read_time: 400
service # set_adc_read_time
adc_read_time=2000
Done
service # adc_read_time
adc_read_time: 2000
service # adc_read_time
adc_read_time: 2000
service # adc_read_time
```

Finally execute store command to store the configuration.

Store configuration

Whenever you change a configuration parameter and you want the change to be permanent you have to store it.

- 1. Verify you are in base service mode the prompt is "service # "
- Execute "store" command to save the configurations
- 3. Verify "service # " prompt appear

Example:

```
service # store
service #
```

- Load configuration
- 1. Verify you are in base service mode the prompt is "service # "
- 2. Execute load command to load the configurations
- 3. Verify "service # " prompt appear

Example:

```
service # load
service #
```

- Get device number
- 1. Verify you are in base service mode the prompt is "service # "
- 2. Execute number command to get the device number
- 3. Verify "number=00000001" hex device number appear

Example:

```
service # number
number=00000001
service #
```

Set device number

- 1. Verify you are in base service mode the prompt is "service # "
- 2. Execute set n command to set the device number
- 3. Verify "number=" prompt appear
- 4. Enter the new device number 0x + (8 hex digits) and press enter
- 5. Verify that "done" appears

```
service # number
number=0x00000001
Done
service #
```


Get firmware version

- Verify you are in base service mode the prompt is "service # "
- 2. Execute version command to get the firmware version
- 3. Verify "version=<some_version>" appear

Example:

```
service # version
version=0x0604bbc1
service #
```

- Get date
- 1. Verify you are in base service mode the prompt is "service # "
- 2. Execute date command to get the current date
- 3. Verify "date=<some_date>" appear

Example:

```
service # date
date=2017-04-01 12:40:00
service #
```

- · Set date
- Verify you are in base service mode the prompt is "service # "
- 2. Execute set d command to set the device number
- 3. Verify "date=" prompt appear
- 4. Enter the new date in format YYYY-MM-dd HH:mm:ss
- 5. Verify "done" appear

Example:

```
service # set_d
Date=2017-04-01 12:40:00
Done
service #
```

- Get current initial config
- 1. Verify you are in base service mode the prompt is "service # "
- 2. Get current config by executing configure.

Example:

```
*** Config ***
2018-09-03 12:03:04
-----
digits1=8
```


digits2=8
count_init1=1
count_init2=1
record_period=0
every=1
counts_threshold=300
sensors=01: CNT1

Description of configuration parameters

Name	Default Value	Possible values	Description
digits1	8	Min value: 1Max value: 9	Total number of countable digits on the display of the meter for the first pulse input
digits2	8	Min value: 1Max value: 9	Total number of countable digits on the display of the meter for the second pulse input
count_init1	1	Max value depends on the digits1 value	The value of the meter display of the first pulse input
count_init2	1	Max value depends on the digits1 value	The value of the meter display of the second pulse input
record_period	0	0 – MINUTES1 – HOURS	The value of the record period 0 mean minutes
every	1	Min value: 1Max value: 127	The value in record period (1 - every 1 minute
counts_threshold	300	Min value: 1Max value: 256	How many counters to keep in memory
sensors	01	Mask of 4 bits	Which input is active, 01 means the first pulse input

Set initial config

- 1. Verify you are in base service mode the prompt is "service # "
- 2. Execute set_conf and enter the configuration menu

```
service # set_conf
config # help
```



```
commands:
help
set_count_init1
set_count_init2
set_digits1
set_digits2
set_rec_period
set_every
set_counts_threshold
set_sensors
save
exit
```

3. Set inputs reading frequency. Execute set every

```
config # set_every
set every= 3
```

4. Enable sensor input port

```
config # set_sensors
sensors= 1
```

5. Set counts threshold (the number of counters to be gathered prior transmission attempt). Execute set_counts_threshold If the transmission is successful all counters will be deleted from memory. If transmission fails counters will be kept in memory and will be re-transmitted on next attempt. If memory got full the oldest counters will be deleted first.

```
config # set_counts_threshold
counts threshold= 100
```

6. Set counter value. Has to be set all meaningful digits up to the magnet pointer. Execute set count init1 for the first input and set count init2 for the second.

```
config # set_count_init1
count_init1= 123
config # set_count_init2
count init2= 234
```

7. Save and apply the configuration. Execute save

```
config # save
Save config
Applying config
Config Counters
rec_conf, size=102, rec_size=2, buff_size=206
Alarm enabled
service #
```

Set NB-IoT radio frequency bands

1. Enter service mode

2. Enter modem mode and enter the following commands. The AT+NBAND command is critical. You can enable one or more bands simultaneously. The more bands you enable the more time the model will require in order to attach to scan the radio and attach to the network

```
service # modem
Type help for help
Boot: Unsigned
Security B.. Verified
Protocol A.. Verified
Apps A..... Verified
REBOOT_CAUSE_SECURITY_PMU_POWER_ON_RESET
Neul
OK
AT+CFUN=0 -> Power down the radio module
OK
AT+NBAND=5,8 -> Set one ore more frequency bands
OK
AT+CFUN=1 -> Power up the radio module
OK
exit
Exit service modem
Turning off GPRS
GPRS is turned off
```